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compared with compensation measuring techniques 
in physics. This way unimportant  information will be 
eliminated while the significance of the information 
in question will be essentially improved. Additionally 
this method seems not to be sensitive to systematic 
errors, since both data sets are affected in the '~ame 
way. The great advantage of the 8 synthesis will be 
clearly seen in the case of more complex crystal 
structures than galenobismutite. 

For a quantitative application in the case of 
occupancy deficiency and /o r  mixed occupancy a bet- 
ter knowledge of the anomalous-dispersion correc- 
tion terms is necessary. Close to the absorption edges, 
the theoretical data according to Cromer & Liberman 
(1981) and Cromer (1983) are obviously incorrect, 
since these values do not take into account the compli- 
cated near-edge structure. 

Since the distinction of lead and bismuth is an 
extreme example considering the small percentage 
difference of the atomic scattering powers, the results 
may be generalized for every combination of elements 
with similar scattering power. 

The general applicability of the 8 synthesis will be 
restricted by the limited wavelength range of the 
monochromators (0.3-2.2 ~) .  As a result, the 8 syn- 
thesis can be applied for elements with an atomic 
number of Z > 22. The method can be extended to 
elements with a lower atomic number by use of 
vacuum techniques, which reduce significantly the 
absorption of soft X-rays by air. In this way measure- 
ments up to 3. -~ 7/~ are possible (e.g. Z s i  = 13~AK = 
6"7/~). However, the volume of the Ewald sphere 
decreases proportionally and the interpretation of the 
8 map may fail because only a small number of data 
is available. In the case of a typical orthorhombic 
silicate structure with lattice constants o f - 1 0  x 10 x 
10 A, only 12 unique reflections can be measured in 
the range of 20--110 °. Additionally, the resolution 
of the electron density map will be too low (dmi , -  > 
4.09 A). 

Nevertheless, even under the 's tandard'  experi- 
mental conditions a wide range of elements is covered 
by the 8 synthesis. So this method can be applied 
advantageously in the scientific field of systematic 
structure analysis. 
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Abstract  

The construction of a Kar le-Hauptman matrix or a 
series of these matrices, suitable for the ab initio 
determination of phases, is presented. An algorithm 

is proposed which is suggested by graph theory. 
Maximization of the determinant of Karle- 
Hauptman matrices, constructed using the new 
algorithm, as a function of the phases yields phase 
sets with very low errors compared with earlier results. 

0108-7673/90/080688-05503.00 O 1990 International Union of Crystallography 



R. DE GELDER, R. A. G. DE GRAAFF AND H. S C H E N K  689 

Introduct ion  

In two preceding papers, describing the work on 
Karle-Hauptman matrices of our group, a set of 
routines has been introduced, enabling the use of 
Karle-Hauptman matrices for the determination of 
intractable small structures (Vermin & de Graaff, 
1978; de Graaff & Vermin, 1982). Essentially, con- 
struction of suitably enlarged starting sets of between 
20 and 30 reflections proved to be automatic. The 
phases could be refined to an average phase error of 
approximately 25 ° for all five problem structures 
tested. However, extension of these sets of phases to 
a set large enough to permit the calculation of E maps 
proved to be not automatic at all. In three of the 
structures extension via the tangent refinement, using 
F A S T A N  from the M U L T A N  system, produced at 
least a partial solution. The fourth failed in this way, 
but was finally solved using the multi-matrix method 
- the concurrent maximization of a number of inter- 
dependent determinants-  proposed by de Graaff & 
Vermin (1982), while the fifth test structure resisted 
all attempts at phase extension. 

The problematic extension of fairly large starting 
sets, which are more or less correctly phased, 
prompted an investigation into the possibilities of 
doing away with tangent refinement completely and 
using Karle-Hauptman matrices to find a starting set 
and to extend it as well. In order to optimize the 
multi-matrix method it was decided to try two possible 
lines of investigation: 

(1) to improve the quality of the matrices used; 
(2) to design an algorithm to find one common 

origin for the phase sets obtained from different 
independent matrices. 

A first successful attempt was the solution of the 
fourth test structure mentioned above. 

The current paper deals with point 1 and describes 
an alternative algorithm for the construction of Karle- 
Hauptman (henceforth KH) matrices. The second 
point will be discussed at a later date. 

A few definitions are first given and then the new 
algorithm is described in some detail. In the final 
paragraph various aspects of the starting sets obtained 
will be compared with earlier results. 

The relationship between the properties of the 
matrix - number of strong reflections, number of sym- 
metry relations versus the number of independent 
phases, average I uI value, number of unobserved 
ref lect ions-and the size of the phase error in the 
starting sets will be commented upon. 

D e f i n i t i o n s  

The following abbreviations and notations will be 
used throughout this paper: 
A the KH matrix with elements E(H)  
m the order of A 
B the inverse of A 

aij an element of A ( i , j =  1 , 2 , . . . ,  m) 
a U the phase of a U ( i , j =  1 , 2 , . . . ,  m)  
b U an element of B ( i , j =  1 , 2 , . . . ,  m) 
fl~j the phase of b U ( i , j =  1 , 2 , . . . ,  m) 
n the number of independent reflections in A 
H~j the reciprocal-lattice vector associated with a U 
N the number of atoms in the unit cell. 

Cons truc t ion  o f  the K H  matr ix  

The reciprocal-lattice vector Hij of KH matrix element 
a o is defined as H u = H u - H l i .  In view of this rela- 
tion, a KH matrix of order m is defined (Karle & 
Hauptman, 1950) by a top row of m - 1 non-identical 
reflections [element a,  is by definition E(000)]. This 
poses the question: which set of top-row reflections 
defines a KH matrix of optimum properties? 

In terms of mathematical graph theory, a KH 
matrix may be regarded as a graph formed by the 
top-row elements. The branches of the graph linking 
all possible pairs of top-row elements are identical 
to KH matrix elements lower in the matrix. Reformu- 
lating the above question in terms of graph theory: 
Does a graph exist (formed by top-row elements) 
where all branches are reflections of the desired type 
(e.g. all branches are strong reflections)? 

In the past (Taylor, Woolfson & Main, 1978), 
several attempts have been made to build matrices 
with high average ]E I values. Among other criteria 
this is one of the most important conditions for suc- 
cessful maximization of the determinant. Other 
criteria for the quality of a KH matrix are considered 
to be: the number of independent phases, the number 
of unobserved reflections and the distribution of the 
reflections over the parity groups (Main, 1975). 

Two main approaches to the problem of construc- 
tion can be distinguished: Building a very large matrix 
and chipping the best possible block from it or starting 

• from a matrix of the desired order and optimizing 
iteratively. Formulating the problem in terms of graph 
theory leads directly to a method which combines 
both ideas. In a topological matrix representing the 
graph formed by a given set of top-row elements-  
reflections - each element corresponds to an element 
of a KH matrix. Replacement of the value of the 
elements in the topological matrix, normally either 
zero or one, by a value related to the IE] value of the 
reflections leads to a modified topological matrix. The 
top row maximizing the sum of the elements of this 
matrix (henceforth the quality matrix) is considered 
to be the top row yielding the best KH matrix. This 
idea is the basis for the new algorithm in which one 
tries to find the best top row from a large quality 
matrix. 

The algorithm consists of the following steps: 
(1) A large quality matrix (order 500-1000) is 

constructed from a top row chosen from all large 
]E (H)]'s including symmetry-related reflections. Only 
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strong reflections are used in the top row with a 
reciprocal vector of length smaller than a given 
maximum, avoiding the generation of reflections out- 
side the sphere of measurement in the rest of the KH 
matrix and stimulating the number of symmetry- 
dependent reflections in the resulting matrix. 

(2) Rows (and corresponding columns) are sorted 
in descending order based on criteria involving the 
]E I values of the reflections appearing in the matrix. 
Criteria based on the maximum values of ([E[2), 
<llEI2-11>, <lEI3> and <llEI3-11> give satisfactory 
results. 

(3) A block inside the quality matrix constructed 
from the first m - 1 top-row elements (situated in the 
upper left-hand corner) is optimized iteratively by 
swapping rows (and columns) for ones further down 
in the quality matrix. Exchange occurs between the 
worst row in the block and the best row outside the 
block, until further improvement is impossible. Dur- 
ing this optimization, elements inside the chosen 
block of order m - 1  are compared with only those 
elements outside the block which enter the block by 
swapping. The order of the KH matrix desired (m) 
determines directly the course of the construction 
process. The value of m is chosen between N / 2  and 
N / 3  (Heinerman, Kroon & Krabbendam, 1979). 

(4) Step 3 may be repeated for blocks constructed 
from top-row elements m + 1, m + 2 , . . . ,  2m; 2m + 1, 
2m + 2 , . . . ,  3m etc. Top-row elements from matrices 
previously optimized are not used again. 

(5) From the collection of optimized blocks of 
order m - 1 the block with the largest sum of elements 
is accepted as the most suitable one. In the selection 
of this block the same criterion is used as in steps (2) 
and (3). This block is moved to the upper left-hand 
comer of the quality matrix and is optimized again, 
now using top-row elements from other optimized 
blocks as well. This last step may again improve the 
best block because top-row elements previously 
unused may now be included. 

The advantage of this method compared with ear- 
lier ones is the availability of all reflections during 
the entire construction process. Moreover, several 
different matrices of comparable quality can be built 
using the same large starting matrix. 

Results and discussion 

To test the matrices constructed using the new 
algorithm, a number of trials was carried out for three 
of the test structures given by de Graaff & Vermin 
(1982), i.e. TOX, TRIGAL and GLUCOPYR. These 
three had proved to be the most intractable; the other 
two, PYROC and ISOPYROC, could be solved easily 
using the program described in the references. 

Rather than trying to produce starting sets suitable 
for extension by tangent refinement, our aim now is 
to create a number of large starting sets with small 

Table 1. A survey o f  the tests o f  the matr ix  construction 

All matrices used in the p repa ra t ion  of  this table are of  the o rde r  twenty.  
Average Not  Symmetry  Start ing set Lowest  

Name IE] value observed  equivalents  reflections A~o(°) 

TOX 1.406 13 97 32 9.3 
TOX 1.413 4 96 38 16.7 
TOX 1.446 2 85 43 17.3 
TOX 1.375 19 60 50 22.5 
TOX 1.413 16 50 69 31-9 
TRIGAL 1.298 41 92 22 11.6 
TRIGAL 1.276 27 64 33 18.4 
TRIGAL 1.385 18 50 50 20.9 
TRIGAL 1.389 23 49 55 25.7 
TRIGAL 1.509 5 45 62 27.6 
GLUCO 1.503 4 103 32 10.5 
GLUCO 1.478 5 91 36 18.1 
GLUCO 1.453 16 90 43 18-5 
GLUCO 1.343 7 46 48 27-5 
GLUCO 1.426 12 42 59 34.3 
TRIGAL 1-312 46 105 14 >40-0 
GLUCO 1.263 I l 134 14 >40-0 

phase errors. The structure will then be solved by the 
combination of these sets into a whole (see Introduc- 
tion). However, to obtain some basis for comparison, 
extension of the best sets obtained was tried, with 
results very similar to those reported earlier. 

For each trial matrix 100 solutions were generated, 
using a random approach similar to that of Yao 
Jia-xing (1981): all independent phases in the matrix 
were assigned random values and the determinant 
was then maximized using the method based on the 
property that at the maximum the relation flo - ao = 7r 
should hold (de Graaff & Vermin, 1982). 

In Table 1 a summary is given, listing for each 
structure a few of the trials only, giving details such 
as average [E I value, the number of unobserved reflec- 
tions, the number of independent phases etc. and the 
phase error of the best starting set ( ]E[>1.3)  
obtained. The order m of all matrices used in the 
tests was 20. 

Some of the criteria to steer the construction pro- 
cess lead to conflicting constraints on this process. A 
useful constraint on the reflections in the top row is 
to impose a limit on the length of the reciprocal vector 
of these reflections. From Fig. 1 there is a clear 
optimum range of this parameter. However, Fig. 2 
shows a slow monotonic decrease of the ratio between 
symmetry-dependent and -independent reflections as 
a function of the same parameter. Clearly, a suitable 
compromise has to be found here. For structure 
TRIGAL a value between 0.5 and 0.6 is optimal. 

In general, a high average [El value and/or  a large 
number of strong reflections in the matrix lead to 
starting sets with low phase errors. This is illustrated 
clearly in Fig. 3: a concentration of good matrices is 
found in the upper right-hand corner (large number 
of strong reflections, high average [El value), whereas 
the majority of the worst matrices are found in the 
left part of the figure. Obviously, a correlation exists 
between the number of strong reflections and the 
average I E[ value, demonstrated by the linear trend 
in the figure. The combination of the number of strong 
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Fig. 1. Number of strong reflections in a KH 
matrix as a function of the maximum 
reciprocal-vector length (vector limit) of the 
reflections forming the top row of the matrix. 
Each point in the figure represents one KH 
matrix constructed using the algorithm of the 
preceding paragraph. For each vector limit four 
different matrices have been generated using 
the criteria (IE[2), ([iE[2-1l>, <IEI3> and 
<11 E [3 _ 1 [>, as indicated in step 2 of the descrip- 
tion of the algorithm. 
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Fig. 2. Ratio of the number of symmetry-depen- 
dent reflections to the number of independent 
reflections in a KH matrix as a function of the 
maximum reciprocal-vector length (vector 
limit) of the reflections forming the top row of 
the matrix. Each point represents a matrix and 
these matrices are the same as those used in 
the construction of Fig. 1. 
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reflections and the average I EI value may be used as 
a criterion to select those matrices which on 
refinement are expected to yield good phases. 
However, Fig. 3 shows a few matrices of high average 
[E I value not giving good starting sets at all. 

Remarkably, the number of unobserved reflections 
does not play a significant role. The table shows very 
good starting sets obtained from matrices containing 
a large number of unobserved reflections. 

The influence of the number of symmetry- 
equivalent reflections is not very clear. Fig. 4 contains 
no evidence of good matrices being found for par- 
ticular values of the ratio between dependent and 
independent reflections only. 

Clearly, the quality of the best matrices produced 
using the new algorithm far exceeds those from earlier 
attempts. For all three structures, large starting sets - 
over 30 reflections - could be generated with very low 
average phase errors (see Table 1). 

Although memory requirements are considerable 
(2-3 Mbyte), the construction algorithm is very fast. 
Using a MicroVAX II, the construction takes 1-3 min 
only. 

It is interesting to note that not until the deter- 
minant was maximized did the phases of the starting 
set bear any relation whatsoever to the true phases. 
This illustrates the validity of the generalized 
maximum determinant rule (Tsoucaris, 1970; Karle, 
1970; Heinerman et al., 1979). 
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Abstract 

The validity of least-squares procedures commonly 
used nowadays for the analysis of single-crystal, X- 
ray and neutron diffraction data is examined. An 
improved methodology that rests on sound statistical 
theory is proposed and turns out to be a fruitful 
way to consider any crystallographic refinement. A 
maximum-likelihood estimation procedure is devel- 
oped for Poisson regression models. Measures of the 
goodness of fit (other than the R factor), generalized 
residuals and diagnostic plots are described. 
Confidence regions and intervals are also discussed. 
A set of measures of the influence of data on the fit 
and the parameter estimates is obtained for Poisson 
statistics. Finally, the effect of under or over disper- 
sion of the data randomness with respect to a true 
Poisson distribution is considered and model- 
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independent estimates of this dispersion are 
discussed. 

~e~, 0, • • • 

• 1, 0 , . . .  

Y, x , . . .  

y , x , . . .  

Y,x,.. .  

General notation and symbols frequently used 

Lower case greek italics denote scalar 
parameters. 
Lower case greek bold denote column- 
vector parameters. 
Upper case italics normally denote real 
random variables. 
Lower case italics normally denote ob- 
served values of real random variables 
(realizations). 
Bold upper case italics normally denote 
column random vectors with correspond- 
ing components Y~, X~, . . . .  
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